
www.manaraa.com

E�cient Detection of All Pointer and Array Access Errors

Todd M. Austin Scott E. Breach Gurindar S. Sohi

Computer Sciences Department

University of Wisconsin-Madison

1210 W. Dayton Street

Madison, WI 53706

faustin, breach, sohig@cs.wisc.edu

Abstract

We present a pointer and array access checking technique
that provides complete error coverage through a simple set
of program transformations. Our technique, based on an ex-
tended safe pointer representation, has a number of novel
aspects. Foremost, it is the �rst technique that detects all
spatial and temporal access errors. Its use is not limited
by the expressiveness of the language; that is, it can be ap-
plied successfully to compiled or interpreted languages with
subscripted and mutable pointers, local references, and ex-
plicit and typeless dynamic storage management, e.g., C.
Because it is a source level transformation, it is amenable to
both compile- and run-time optimization. Finally, its per-
formance, even without compile-time optimization, is quite
good. We implemented a prototype translator for the C lan-
guage and analyzed the checking overheads of six non-trivial,
pointer intensive programs. Execution overheads range from
130% to 540%; with text and data size overheads typically
below 100%.

1 Introduction

It is not di�cult to convince programmers (or employers of
programmers) that programming errors are costly, both in
terms of time and money. Memory access errors are particu-
larly troublesome. A memory access error is any dereference
of a pointer or subscripted array reference which reads or
writes storage outside of the referent. This access can either
be outside of the address bounds of the referent, causing a
spatial access error, or outside of the lifetime of the referent,
causing a temporal access error. Indexing past the end of an
array is a typical example of a spatial access error. A typical
temporal access error is assigning to a heap allocation after
it has been freed.
Our own experiences as programmers as well as published

evidence lead us to believe that memory access errors are an
important class of errors to reliably detect. For example, in

This work was supported by grants from the National Science
Foundation (grant CCR-9303030) and O�ce of Naval Research
(grant N00014-93-1-0465).

[MFS90], Miller et. al. injected random inputs (a.k.a \fuzz")
into a number of Unix utilities. On systems from six di�erent
vendors, nearly all of the seemingly mature programs could
be coaxed into dumping core. The most prevalent errors de-
tected were memory access errors. In [SC91], Sullivan and
Chillarege examined IBM MVS software error reports over a
four year period. Nearly 50% of all reported software errors
examined were due to pointer and array access errors. Fur-
thermore, of these errors, 25% were temporal access errors {
an error our checking methodology is particularly adept at
catching.
Memory access errors are possible in languages with ar-

rays, pointers, local references, or explicit dynamic storage
management. Such errors are particularly di�cult to detect
and �x because:

� The e�ects of a memory access error may not manifest
themselves except under exceptional conditions.

� The exceptional conditions which lead to the program
error may be very di�cult to reproduce.

� Once the error is reproduced, it may be very di�cult to
correlate the program error to the memory access error.

Consider the erroneous C function in Figure 1. This func-
tion can create a memory access error in the return state-
ment expression. The function will reference the word im-
mediately following the array referenced by the pointer data
if the array does not contain the token.
The function illustrates the three di�culties in �nding and

�xing memory access errors. First, FindToken() will only
produce an incorrect result if the word following the array
referenced by data contains the same value as token (or is
inaccessible storage). This event is unlikely if the word con-
tains an arbitrary value. Second, when (or if) FindToken()
creates an incorrect result, it will be di�cult to recreate dur-
ing debugging. The programmer will have to condition the
inputs of the program such that the word following the ar-
ray referenced by data once again contains the same value
as token. If the value of the illegally accessed word is inde-
pendent of the value of token, the probability of success will
be very low. Third, correlating the visible errors of the pro-
gram to the incorrect actions of FindToken() may be very
di�cult. This connection may be very subtle and may not
be visible for a long period of time.
Many execution environments do provide some level of pro-

tection against memory access errors. For example, in most
Unix based systems, a store to the program text will cause
the operating system to terminate execution of the program
(usually with a core dump). Unix typically provides storage

To appear in: \Proceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation"

www.manaraa.com

int FindToken(int *data, int count, int token) f
int i = 0, *p = data;

while ((i < count) && (*p != token)) f
p++; i++;

g
return (*p == token);

g

Figure 1: A C function with a (spatial) memory access error.

protection on a segment granularity { the segments are the
program text, data, and stack. Other, more hostile environ-
ments such as MS-DOS, do not o�er such luxuries, and stores
to the program text may or may not manifest themselves as
a program error. If a program error does occur, correlating
it to a fault may be di�cult, if not impossible.

Ideally, we would like the language execution environment
to support memory access protection at the variable level,
that is, an access to a variable should only be valid if the
access is within the range (for both time and space) of the
intended variable { all other accesses should immediately
ag
an error. We call any program that supports these execution
semantics a safe program.

Our solution to the memory access error problem is simple
and provides e�cient and immediate detection of all memory
access errors. We transform programs, at compile-time, to
use an extended pointer representation which we call a safe
pointer. A safe pointer contains the value of the pointer as
well as object attributes. The object attributes describe the
location, size and lifetime of the pointer referent. When a
safe pointer value is created, either through the use of the
reference operator (e.g., `&' in C) or through explicit storage
allocation, we attach to it the appropriate object attributes.
As the value is manipulated, through the use of pointer op-
erators, the object attributes are transferred to any new safe
pointer values. Detecting a memory access error involves
simply validating dereferences against the object attributes
{ if the access is within the space and time bounds of the
object, it is permitted, otherwise an error is
agged and the
access error is detected immediately.

We implemented a prototype source-to-source translator
for the C language and examined the performance of six non-
trivial, pointer intensive programs. The performance is quite
good. Instruction execution overheads range from 130% to
540%, and text and data size overheads are typically below
100%. We also benchmarked our prototype system against
two commercially available tools that support memory access
checking (Purify [HJ92] and CodeCenter [KLP88]) and found
that our checking technique consistently uses less resources,
even while providing better error coverage for memory access
errors.

This paper is organized as follows. Section 2 introduces our
extended safe pointer representation. Section 3 details the
program transformations required to create safe programs,
and in Section 4 we discuss the translation and performance
implications of providing complete error coverage. In Sec-
tion 5, we present compile- and run-time optimization frame-
works. Section 6 describes our prototype implementation
and presents results of our analyses of six programs. Sec-
tion 7 compares our checking technique to other published
techniques. Section 8 concludes the paper.

typedef f
<type> *value;

<type> *base;

unsigned size;

enum fHeap=0, Local, Globalg storageClass;

int capability; /* plus FOREVER and NEVER */

g SafePtr<type>;

Figure 2: Safe pointer de�nition. This C-like type de�nition is
parameterized by <type>, the type of the pointer referent.

2 Safe Pointers

To enforce access protection, we must extend the notion of
a pointer value to include information about the referent.
The idea is similar to tagged pointers used in many Lisp
implementations [Lee91]. Figure 2 shows our safe pointer
representation. The de�nitions of the contained �elds follow:

value: The value of the safe pointer; it may contain any
expressible address.

base and size: The base address of the referent and its size
in bytes. In languages where pointers are immutable,
base is redundant and may be omitted. With this in-
formation, we can detect all spatial access errors with a
range check.

storageClass: The storage class of the allocation, either
Heap, Local, or Global. Using this value, it is possible
to detect errant storage deallocations, e.g., it is illegal
to free a global or local variable.

capability: A capability to the referent. When dynamic
variables are created, either through explicit storage al-
location (e.g., calls to malloc()) or through procedure
invocations (i.e., a procedure call creates the local vari-
ables in the stack frame of the procedure), a unique ca-
pability is issued to that storage allocation. The unique
capability is also inserted into an associative store called
the capability store and deleted from that store when
the dynamic storage allocation is freed or when the pro-
cedure invocation returns (the exact mechanics of this
process are discussed in a following section). Thus, the
collection of capabilities in the capability store represent
all active dynamic storage. Temporal access errors oc-
cur whenever a reference is made through a stale pointer,
i.e., a pointer which references storage whose capability
is no longer in the capability store. Two capabilities
are prede�ned. FOREVER is unique and always ex-
ists in the capability store; this capability is assigned to
all global objects. NEVER is unique and never exists
in the capability store; this capability can be assigned
to invalid pointers to ensure any dereference causes an
error.

The value attribute is the only safe pointer member that
can be manipulated by the program source; all other mem-
bers are inaccessible. base and size are the spatial at-
tributes. storageClass and capability are the temporal
attributes.
Safe pointers can exist in three states: unsafe, invalid, and

valid. If the object attributes are incorrect, we say that the
pointer has become unsafe; dereferencing this pointer may
cause an undetected memory access error. It is the goal
of this work to ensure that a safe pointer never becomes

www.manaraa.com

unsafe. If the safe pointer is not unsafe, it is either invalid
or valid, depending on whether a dereference would
ag an
error. Languages with mutable pointers allow the program
to legally create invalid pointers; for example, iterating a
pointer across all the elements of an array exits the loop
with the pointer pointing to the memory location following
the last object. If the invalid pointer is never dereferenced,
the program would not be in error. This behavior illustrates
precisely why we only place error checks at dereferences; it
is not illegal to have an invalid pointer { only to use it.
The initial value of a safe pointer, if not speci�ed by an

initialization expression, must be invalid. This condition en-
sures that a dereference before the initial assignment is de-
tected. A simple way to invalidate a pointer value is to assign
it the unique capability NEVER.

3 Program Transformations

Creating a safe program from its unsafe counterpart involves
three transformations: pointer conversion, check insertion,
and operator conversion. The �rst, pointer conversion, ex-
tends all pointer de�nitions and declarations to include space
for object attributes. Check insertion instruments the pro-
gram to detect all memory access errors. Operator conver-
sion generates and maintains object attributes. In this sec-
tion, we also describe the run-time support.

3.1 Pointer Conversion

All pointer de�nitions and declarations must be extended
to include object attributes. To make this transformation
transparent, the composite safe pointer must mimic the �rst
class value semantics of scalar pointers. That is, when passed
to a function, the safe pointer must be passed by value, and
when operators are applied to a safe pointer, the result, if a
pointer, must be a new safe pointer.
There is no need to add object attributes to array vari-

ables. Array variables (in the C sense) are merely address
constants, and thus only exist as statically allocated objects
or within structure de�nitions; as a result, the spatial at-
tributes can be generated from the address constant and its
type size, and the temporal attributes can be taken from
the safe pointer to the containing object or derived from the
array name.

3.2 Check Insertion

Assuming the safe pointer object attributes are correct (how
to ensure this property is detailed in the following sections),
complete safety for all pointer and array accesses is provided
by inserting an access check before each pointer or array
dereference.1

The dereference check �rst veri�es that the referent is alive
by performing an associative search for the referent's capa-
bility. If the referent has been freed, the capability would no
longer exist in the capability store and the check would fail.
Because capabilities are never re-used, the temporal check
fails even if the storage has been reallocated. Once the stor-
age is known to be alive, a bounds check is applied to verify
that the entire extent of the access �ts into the referent.
Our access check, shown in Figure 3, takes advantage of

the wrap-around property of unsigned arithmetic to simplify

1We use the term dereference as a blanket term for any indirect
access { either through application of the dereference operator
(e.g., `*' or `->' in C) or through indexing an array or pointer
variable (e.g., `[]' in C).

void ValidateAccess(<type> *addr) f
if (storageClass != Global &&

!ValidCapability(capability))

FlagTemporalError();

if ((unsigned)(addr-base) > size-sizeof(<type>))

FlagSpatialError();

/* valid access! */

g

Figure 3: Memory access check. ValidCapability() indicates
whether or not the passed capability is currently active, i.e., in
the capability store. The Flag functions performs system speci�c
handling of an access error.

the bounds check. If the accessed address is prior to the
start of the array, the unsigned subtraction under
ows and
creates a very large number, causing the test to fail. The
advantage of this expression over traditional bounds checks2

is that it only requires one conditional branch to implement.
This simpli�cation reduces the additional control complexity
introduced by dereference checks, which can result in better
optimization results and better dynamic executions.

3.3 Operator Conversion

Pointer operators must interact properly with the compos-
ite safe pointer structure. When applied, they must reach
into the safe pointer to access the pointer value. If the op-
erator creates a new pointer value, it must include an un-
modi�ed copy of the pointer operand's object attributes. For
example, in the C statement q = p + 6, the application of
the `+' operator on the pointer p creates a new safe pointer
which is assigned to q. The new pointer value in q shares the
same object attributes as p. Operators which manipulate
pointer values never modify the copied object attributes be-
cause changing the value of the pointer does not change the
attributes of the storage it references. This property holds
even for pointers to aggregate structures. In this case, the
object attributes refer to the entire aggregate.
The assignment operator requires special handling if the

right hand side is a constant. Two common pointer constants
are the NULL value and pointers to string constants (for C).
If the assignment value is NULL, the NULL value can be
replaced by an invalid safe pointer value, e.g., one with the
capability NEVER. For string constants, we can generate the
needed object attributes at compile-time. If the right hand
side of the assignment is a pointer expression, the result-
ing pointer value (and its object attributes) is copied to the
pointer named on the left hand side of the assignment.
Casting between pointer types does not require any spe-

cial program transformations. This operation only alerts the
compiler that future pointer arithmetic or dereferences of a
particular pointer value should be made with respect to the
new type size. Casting to a non-pointer type requires that
the object attributes be dropped (if only pointers carry ob-
ject attributes) and the cast be carried out as de�ned by
the language. Casting from a non-pointer type to a pointer
type is problematic if non-pointer types do not carry object
attributes. We address this problem in Section 4.

2Our check is functionally equivalent to:

(addr < base || addr > base+size-sizeof(<type>))

which requires two conditional branches (or extra instructions to
combine the boolean terms).

www.manaraa.com

Handling of the reference operator, e.g., the `&' operator
in the C statement q = &p->b[10], is slightly more complex
as it must generate object attributes. The reference opera-
tor is applied to an expression (p->b[10], in our example)
which names some storage. We call this expression the ac-
cess path. The result of the operation is a new safe pointer
to the referent named by the expression.

To generate object attributes for a reference operation
(e.g., `&'), we decompose access paths into two parts, a pre�x
and a su�x. The access path pre�x is a non-empty sequence
of variable names, dereferences, subscripts, �eld selectors,
and pointer expressions leading to the memory object being
referenced. The remaining part of the access path, the access
path su�x, is a possibly-empty sequence of �eld selectors and
subscripts (on array variables only) indicating the extent of
the memory object being referenced.

We further classify access paths as direct or indirect. A
direct access path refers to an object in the global or local
space by name. An indirect access path contains at least one
pointer traversal.

Given a reference operator expression, we can parse the
access path pre�x by traversing the expression tree starting
with the left-most, lowest precedence operator. The part
of the expression up to but not including the last pointer
traversal is the access path pre�x; the remainder of the ex-
pression becomes the access path su�x. If the access path
does not contain any pointer traversals, the access path pre-
�x is merely the name of the referenced variable.

To illustrate this decomposition, consider the C expression
&f->g[4].i[6], where g is a pointer and i is an array within
a structure. The access path pre�x is the sub-expression
f->g[4]. The access path su�x is the remainder of the ex-
pression, i[6]. The access path pre�x is indirect.

The temporal attributes of the new safe pointer are de-
rived from the access path pre�x. If the pre�x is direct, the
referenced object is either a global or a local variable. If
global, the capability FOREVER is assigned to the new safe
pointer. If local, the capability allocated to the local vari-
able's stack frame is assigned to the new safe pointer (frame
capability allocation is discussed in the following section). If
the access path pre�x is indirect, the temporal attributes are
taken from the safe pointer named by the access path pre�x.

The spatial attributes are derived from both the access
path pre�x and su�x. The base of the safe pointer is taken
from the object referred to by the access path pre�x, namely
the address of the named variable for a direct pre�x or the
corresponding spatial attributes of the referenced safe pointer
for an indirect pre�x. The value and size of the safe pointer
are computed from the access path su�x. Because all mem-
bers of the referenced object (i.e., the member of any con-
tained structure) are of a known size, the spatial attributes
of the reference can be computed at compile-time from type
information. In the event the �nal term of the su�x is a
subscript, the spatial attributes are set to the extent of the
entire array. This technique allows the safe pointer to be
subsequently manipulated to point to other members of the
array.

The use of the access path pre�x and su�x to produce
a safe pointer via the reference operator cannot subvert the
checking framework. In order to maintain safe semantics,
any pointers traversed within the access path pre�x must
be validated using the techniques described in the previous
subsection.

void *malloc(unsigned size) f
void *p;

p.base = p.value = unsafe malloc(size);

p.size = size;

p.storageClass = Heap;

p.capability = NextCapability();

InsertCapability(p.capability);

bzero(p.value, size); /* capability NEVER is 0 */

return p;

g

void *calloc(unsigned nelem, unsigned elsize) f
return malloc(nelem*elsize);

g

void *realloc(void *p, unsigned size) f
void *new;

new = malloc(size);

bcopy(p.base, new.base, min(size, p.size));

free(p);

return new;

g

void free(void *p) f
if (p.storageClass != Heap)

FlagNonHeapFree();

if (!ValidCapability(p.capability))

FlagDuplicateFree();

if (p.value != p.base)

FlagNonOriginalFree();

DestroyCapability(p.capability);

unsafe free(p.value);

g

Figure 4: Safe malloc implementation with additional
checking. InsertCapability(), ValidCapability(), and
DestroyCapability() insert, locate, and delete capabilities, re-
spectively. NextCapability() returns the next unique capability.
unsafe malloc() and unsafe free() are interfaces to the system-
de�ned storage allocator.

3.4 Run-Time Support

The explicit storage allocation mechanism must be extended
to create safe pointers. During allocation, a capability must
be allocated for the storage, and any contained pointers must
be invalidated. At deallocation, the capability given to the
storage must be destroyed.

Figure 4 shows how this support would be provided for
malloc(), the storage allocator provided under Unix. Dur-
ing allocation, malloc() generates a safe pointer using the
size and location of the allocation request. The call to
NextCapability() returns the next available and unused ca-
pability. NextCapability() can be implemented with an in-
crementing counter or a pseudo-random number generator.
The capability is inserted into the capability store via the
call to InsertCapability(). The call to bzero() clears the
entire storage allocation. This action ensures that any point-
ers in the untyped allocation are initially invalid (assuming
the storage class of Heap and capability NEVER are both
assigned the value of 0).

The implementation of realloc() is slightly more subtle.
This function takes an existing storage allocation and resizes
it to the requested size. The reallocated storage maymove for
any request, either larger or smaller. If moved, the contents
of the new allocation will be unchanged up to the lesser of the
new and old sizes. In our safe programming environment, we

www.manaraa.com

void Func(int a) f
/* procedure prologue */

unsigned frameCapability = NextCapability();

InsertCapability(frameCapability);

ZeroFramePointers(); /* cap. NEVER == 0 */

.

.

/* procedure epilogue, common exit point */

DestroyCapability(frameCapability);

return;

g

Figure 5: Function frame allocation and deallocation.
ZeroFramePointers() is a system speci�c function which clears
all pointers in the newly allocated stack frame.

must move the storage in all cases, otherwise, there may exist
safe pointers (which we cannot locate and change) whose
object attributes have incorrect records of the referent size.
If dereferenced, these pointers may
ag errors even though
the access was valid in the reallocated storage, or worse, the
reallocation may have shrunk the referent, creating unsafe
pointers whose referent sizes are too large. We can solve
both these problems by always moving the storage. This
action will force the program to update any old pointers to
the previous allocation. Because the reallocated storage is
allocated under a new capability, any stale pointers to the
previous allocation will
ag errors if dereferenced. We need
not clear the remaining storage in the reallocation if it is
larger, as the call to malloc() returns cleared storage.

At calls to free(), the capability of the allocation (con-
tained in the safe pointer object attributes) is deleted from
the capability store by the call to DestroyCapability().
Our implementation also veri�es that the freed storage is
indeed a heap allocation, has not been previously freed, and
points to the head of the allocation (as this condition is re-
quired by free()).

The same allocation mechanism is applied to the dynamic
storage allocated in procedure stack frames. When a function
is invoked, a capability must be allocated for the entire frame
if it contains any referenced locals. Any pointers contained
in the frame must be set to an invalid state.

Figure 5 shows how this rewriting would be done for a
C function. The function ZeroFramePointers() serves the
same purpose as the call to bzero() in malloc(); it ensures
that any pointers in the procedure stack frame are initially
invalid by clearing the frame storage. Because stack frame
allocations are strongly typed, ZeroFramePointers() could
be replaced by NULL assignments to all the frame pointers.

If the language supports non-local jumps, e.g., longjmp()
in C, the run-time support must delete the frame capabilities
of any elided function frames. This operation can be simply
and portably implemented if the local capability space and
heap capability space are kept disjoint, and function frame
capabilities are allocated using an incrementing counter. The
allocation of frame capabilities then becomes a depth-�rst
numbering [ASU86] of the dynamic call graph. When a non-
local jump occurs, all elided frame capabilities between the
source frame and destination frame are deleted by removing
all frame capabilities in the capability store that are larger
than the frame capability of the destination frame. This
mechanism only works if the source and destination frames
are on the same call stack { this stipulation may not be true
in all cases, e.g., coroutine jumps.

The capability store is an associative memory containing

the capabilities of all active memory. It can be implemented
as a hash table with the capability as the hash key. Accesses
to the capability store exhibit a great deal of temporal lo-
cality, so moving accessed elements to the head of the hash
table bucket chains is likely to decrease average access time.
We close this section with two examples. Figure 6(a)

shows a spatial access error, and Figure 6(b) demon-
strates a temporal access error. Safe pointer values
are speci�ed as a 5-tuple with the following format:
[value,base,size,storageClass,capability]. x indicates a don't
care value. In the �rst example, a spatial access error is

agged when the program dereferences a safe pointer whose
value is less than the base of the referent. In the second
example, a stale pointer, q, is dereferenced. Even though
the same storage has been reallocated to p, the capability
originally assigned to q has been destroyed during the call to
free(); thus, the temporal access error is detected.

4 Implications of Complete Error

Coverage

Our safe programming technique can detect all memory ac-
cess errors provided that the following conditions hold:

i. Storage management must be apparent to the transla-
tor.

ii. The referents of all pointer constants must have a known
location, size, and lifetime.

iii. The program must not manipulate the object attributes
of any pointer value.

Our claim to complete error coverage must be limited
to storage management controlled by the safe programming
run-time system. If a program implements a domain speci�c
allocator at the user level, some memory access errors, as
viewed by the programmer, can be missed.
Consider, for example, a �xed size storage allocator. If a

program relies heavily on a �xed size structure, storage re-
quirements and allocation overheads can be greatly reduced
by applying a �xed size allocation strategy. At the program
level, the �xed size allocator calls the system allocator, e.g.,
malloc() or sbrk(), to allocate a large memory allocation.
The �xed size allocator then slices the system allocation into
�xed size pieces with a zero overhead for each allocation.
Under this scheme, our safe programming technique would
ensure that no accesses to a �xed size allocations are out-
side of the space and time bounds of the block from which
the �xed size allocation was derived. This imprecision oc-
curs because the translator can not distinguish the user level
storage allocation actions from other pointer related program
activities.
With some programmer intervention this problem can be

overcome. Any useful safe compiler implementation will have
to include an application programmers interface, or API,
through which systems programmers can construct and ma-
nipulate the object attributes of safe pointers. In the case of
the �xed size storage allocator, the programmer would spec-
ify the base and size of the �xed size allocation. The storage
class and capability would be generated from the safe pointer
to the block from which the �xed size allocation was derived.
Without the second quali�cation, the compiler may not

be able to generate correct object attributes for a pointer
constant. For example, device driver code typically creates
pointers to device bu�ers and registers by recasting an inte-
ger to a pointer value. The translator has no way of knowing

www.manaraa.com

p q capability store

[x,x,x,x,NEVER]

[x,x,x,x,NEVER]
 "
[1011,1001,100,Global,FOREVER]
[1010,1001,100,Global,FOREVER]
 "
 "
 "

[x,x,x,x,NEVER]

[1000,1000,101,Global,FOREVER]
 "
 "
 "
 "
[798,1000,101,Global,FOREVER]
 "

 { }

 { }
 "
 "
 "
 "
 "
 "

struct {
 char a;
 char b[100];
} x, *p;
char *q;

p = &x;
p; / no error */
q = &p−>b[10];
q−−;
*q;
p −= 2;
p; / error!!! */

p q capability store

[x,x,x,x,NEVER]

[x,x,x,x,NEVER]
[2006,2000,10,Heap,1]
 "
 "
 "
 "

b)

a)

char *p, *q;

p = malloc(10);
q = p+6;
q; / no error */
free(p);
p = malloc(10);
q; / error!!! */

[x,x,x,x,NEVER]

[2000,2000,10,Heap,1]
 "
 "
 "
[2000,2000,10,Heap,2]
 "

 { }

 { 1 }
 "
 "
 { }
 { 2 }
 "

Figure 6: Memory access checking examples. Figure a) is an example of a spatial access error, Figure b) is an example of a
temporal access error. Safe pointer values, shown after each line is executed, are speci�ed as a 5-tuple with the following format:
[value,base,size,storageClass,capability]. An occurrence of x indicates a don't care value.

the size and lifetime of the referent; thus, program safety
cannot be maintained. In C, the only well de�ned pointer
constants are NULL, strings, and functions. For all other
cases, this problem can be avoided by supplying the pro-
grammer with an API suitable for specifying the size and
lifetime of problematic pointer constants.

The second quali�cation does not, however, preclude the
use of recasts from non-pointer variables to pointer variables.
To successfully support these operations, object attributes
must be attached to all variables. In general, to provide
complete safety, we need to attach object attributes to any
storage that could hold a pointer value. It is our contention
that most \well behaved" programs will only require pointer
variables to carry object attributes.

The �nal quali�cation protects object attributes. If a pro-
gram can arbitrarily manipulate the object attributes of a
pointer value, then safety can always be subverted. For ex-
ample, changing the storage class of a pointer from Global
to Heap and then freeing the pointer would likely cause dis-
astrous e�ects under our storage allocation scheme.

If object attributes are only attached to pointer values, the
danger exists of manipulation through the use of recasts or
unions. With a recast, it is possible to type storage in the
referent �rst as a non-pointer value, manipulate the storage
arbitrarily, and then recast the referent storage to a (possibly
unsafe) pointer. Using a union, it is possible to create a
pointer value under one �eld and then manipulate the object
attributes of the pointer value through another overlaid, non-
pointer �eld of the union.

The only solution that we can conceive to prevent this
kind of manipulation is to attach object attributes to each
byte of allocated storage. For types larger than one byte, the
object attributes would be copied to all other storage holding
the allocation. In this way, any arbitrary overlaying of types
would still not allow the object attributes to be manipulated
at the program level.

In reality, we can provide a high margin of safety for \well
behaved" programs by attaching object attributes only to
pointer values. We consider a well behaved program to be

one in which pointer values are never created from or manip-
ulated as non-pointer values. If a program violates this rule
intentionally (e.g., through a recast), a safe compiler which
makes a conservative approximation as to the intended ref-
erent of the new pointer value allows the pointer to access
any live storage. 3 If the rule is broken unintentionally (e.g.,
through incorrect use of a union), the error will likely be
caught because it is di�cult to manufacture, accidentally,
an unsafe pointer.

5 Optimizing Dereference Checks

In the interest of performance, it may be possible to elide
dereference checks and still provide complete program safety.
If we can determine that the following invariant holds, the
check may be elided.

A check at a dereference of pointer value v may be
elided at program point p if the previous, equivalent
check executed on v has not been invalidated by some
program action.

We can implement this check optimization either at run-
time or at compile-time. Run-time check optimization has
the advantage of being more
exible. We only need to ex-
ecute the checks absolutely required to maintain program
safety. However, the cost for this precision is extra safe
pointer state which must copied, maintained, and checked at
each dereference. Compile-time check optimization, on the
other hand, is less
exible because we must constrain the
decision to elide a check to all previous possible executions
leading to a program point. The advantage of compile-time

3Note that in this case, safety can no longer be guaranteed
because the intended referent is not known. Hence, we cannot
bind the object attributes of a live variable to the new pointer
because the program may have manipulated the pointer value to
point outside of the intended referent prior to recasting it to a
non-pointer value.

www.manaraa.com

void ValidateAccess(<type> *addr) f
if (freeCount != currentFreeCount) f

if (storageClass != Global &&

!ValidCapability(capability))

FlagTemporalError();

freeCount = currentFreeCount;

g
if (lastDerefAddr != addr) f

if ((unsigned)(addr-base) > size-sizeof(<type>))

FlagSpatialError();

lastDerefAddr = addr;

g
/* valid access! */

g

Figure 7: Memory access check with run-time check opti-
mization. The variable currentFreeCount is a global counter
incremented each time storage is deallocated.

check optimization is that no additional overhead is required
at run-time to determine if a check may be elided.

5.1 Run-Time Check Optimization

We have designed and implemented a framework for dynami-
cally eliding spatial and temporal checks. Spatial checks have
no side e�ects, thus we can employ memoization [FH88] (or
function caching) to elide their evaluation. We store the
operands to the last check in the safe pointer object at-
tributes, which amounts to the e�ective address of the last
dereference. At any dereference, the spatial check may be
elided if the e�ective address since the last check has not
changed. This test is shown in Figure 7 in the if statement
surrounding the bounds check. It may be useful to memoize
more than one set of operands. In our implementation, we
memoize both the e�ective address of the last dereference,
i.e., use of the C operator `*', and the e�ective address of
the last subscript operation, i.e., use of `[]'. Changes in
the former can be tracked with only a single \dirty" bit, set
when the pointer value is changed. Changes in the latter are
tracked by retaining a copy of the last index applied to the
pointer value.
To elide temporal checks, we keep a copy of a global

counter, incremented when storage is deallocated, in the safe
pointer. If this counter, which we call the free counter, has
not changed since the last temporal check, the referent has
not been freed and the temporal check can be safely elided.
In our implementation, we keep separate counters for heap
and stack deallocations.

5.2 Compile-Time Check Optimization

We have also designed (and are currently implementing) a
compile-time optimization framework like that proposed by
Gupta [Gup90]. Our algorithm implements a forward data-

ow framework similar to that used by common subexpres-
sion elimination [ASU86]. However, our algorithm extends
previous work to include eliding of temporal error checks,
and because of our simpli�ed bounds check, there is no need
to split the optimization into upper and lower bounds check
elimination.
Our optimization algorithm is shown in Figure 8. The

algorithm is run twice, once for optimization of spatial checks
and again for temporal checks. The algorithm executes in
three phases.

Input: A
ow graph G with blocks B with gen[Bi] and
kill[Bi] computed for each block Bi 2 B. gen[Bi] is the
set of check expressions generated in Bi. kill[Bi] is the
set of check expressions killed in Bi. The entry block is B1.

Output: A
ow graph G with redundant checks deleted.
Method: The following procedure is executed twice, once
for spatial check optimization and again for temporal
check optimization.

/* initialize out sets */
in[B1] = ;;
out[B1] = gen[B1];
U = [

Bi8B
gen[Bi];

for Bi 2 B � B1 do

out[Bi] = U � kill[Bi];
/* compute availability of checks, in sets */
change = true;
while change do begin

change = false;
for Bi 2 B �B1 do begin

in[Bi] =

T

P2Pred[B]
out[P];

oldout = out[Bi];
out[Bi] = gen[Bi] [(in[Bi]� kill[Bi]);
if out[Bi] 6= oldout then

change = true;
end

end

/* elide redundant checks */
for Bi 2 B � B1 do begin

for c 2 gen[Bi] do begin

if c 2 in[Bi] then
elide check c;

end

end

Figure 8: Compile-time check optimization algorithm.

In the �rst phase, the algorithm seeds the data-
ow anal-
ysis by approximating all out sets. For all blocks except the
entry block, the value of out[Bi] is set to all check expressions
less those killed by the block Bi, i.e., U � kill[Bi]. For the
program entry block, B1, we must assume that no checks are
available, hence, in[B1] is set to empty and out[B1] is set to
the checks generated in the entry block B1.
In the second phase, the data-
ow framework is solved to

determine where check expressions reach in the program. For
a check expression to reach a node Bi, it must be available at
Bi for all executions, that is, it must be available in the out
sets of all predecessors to block Bi. This requirement is pre-
cisely why the con
uence operator is intersection. After the
data-
ow computation converges on a solution, i.e., change
== false, the set in[Bi] contains all checks that reach block
Bi.
In the third phase, the in sets are used to elide redundant

checks. Checks may be elided wherever a lexically identical
or equivalent (if more powerful tests are applied) check is
available in the block (i.e., the same check is in the in set of
the block).
The de�ning feature for each analysis (spatial and tem-

poral) is the speci�cation of what constitutes a kill. A spa-
tial check is killed by any assignment to a check operand,
which includes assignment to the pointer variable or any of
the operands of the index expression (if the pointer was in-
dexed in the check expression). A temporal check is killed
by any deallocation of the referent storage. If the referent
of a free can be determined to be di�erent than the check

www.manaraa.com

referent (e.g., through alias analysis), the free need not kill
the check.
While performing these analyses, we must also be wary

of kills that may occur through function calls or aliases. In
either case, we must make a conservative approximation if
insu�cient information is available and assume that a kill
does occur.

6 Experimental Evaluation

We evaluated our safe programming methodology by imple-
menting a semi-automatic source-to-source translator and
examining the run-time, code and data size overheads for
six non-trivial programs. For each program, we analyzed
its performance without optimization and with run-time re-
solved optimizations; we did not consider compile-time opti-
mizations (our current implementation does not support this
technique, though work in this direction is in progress).

6.1 Experimental Framework

We translated C programs to their safe counterparts by �rst
rewriting all pointer and array declarations, calls to malloc()
and free(), and references (use of the `&' operator) to use
our Safe-C macros. These macros, when passed through the
C preprocessor (CPP), produce either the original C program
or a Safe-C program. A Safe-C program has all pointer and
array declarations changed to type parameterized C++ class
declarations. Using operator overloading in the C++ class
de�nition, we implement the extended safe pointer and array
semantics as described in Section 3.
All explicit storage allocation, i.e., calls to malloc() and

free(), call wrapper functions which create safe pointers
from the standard library routines. Our malloc() implemen-
tation clears all allocated storage, so any contained pointers
start in the invalid state. If a local in a function is used as
a pointer referent, we also rewrite the function to allocate a
capability for the frame. Any pointer in the stack frame of
a function is initialized to an invalid state in the constructor
of the C++ safe pointer class. Application of the reference
operator calls a function which creates a safe pointer from
the decomposed access path.

6.2 Analyzed Programs

We analyzed six programs, selected because each exhibits
a high frequency of indirect references. The programs in-
clude an anagram generator (Anagram), a neural net sim-
ulator (Backprop), an arbitrary precision calculator (GNU
BC), a minimum spanning tree generator (Min-Span), a
graph partitioning tool (Partition), and a VLSI channel
router (YACR-2). Table 1 details the programs that we ana-
lyzed. For each, we show the code size (Instructions/Static),
the number of instruction executed without checking (In-
structions/Dynamic), the frequency of dereferences in the
program text (Insts per Dereference/Static), and the dy-
namic frequency of dereferences executed (Insts per Deref-
erence/Dynamic).

All programs were compiled and executed on a DECsta-
tion 3100 using AT&T USL cfront version 3.0.1. The output
of cfront (C code) was compiled using MIPS cc version 2.1
at optimization level `-O2'. All instruction counts were ob-
tained with QPT [Lar93].
For all analyses, object attributes were only attached to

pointer values. We used a 15 byte safe pointer (275% over-
head) in the unoptimized case: 4 byte pointer value, 4 byte

Program Instructions Insts per Dereference

Static Dynamic Static Dynamic

(x103) (x106)

Anagram 10.0 19.4 106.3 7.6

Backprop 10.8 122.4 148.5 8.9

GNU BC 19.5 12.2 15.5 7.6

Min-Span 11.9 13.3 48.7 5.9

Partition 13.5 21.1 62.4 3.7

YACR-2 18.5 546.2 37.1 14.0

Table 1: Analyzed programs.

base, 4 byte size, a 1 byte storage class speci�er, and a 2 byte
capability. For run-time check optimization, we added a 1
byte dirty
ag, a 4 byte last index, and a 2 byte free counter
for a total size of 22 bytes (450% overhead). Due to a bug
in the C++ compiler, we could not use sizeof() in the safe
pointer implementation if the referent referred to itself; as
a result, BC, Min-Span, and Partition all required the size
of the referent to be stored in the safe pointer, which added
a 4 byte overhead for these programs. There were no space
overheads for array variables, as all required object attributes
are known at compile-time. We only rewrote the actual pro-
gram code, all system library routines remained unchecked.
We did, however, perform interface checking. Whenever a
system library is called, any pointer arguments are validated
against the time and space bounds expected by the library
routine. For example, if a call were made to fread(), the
interface check would ensure that the destination of the read
was live storage and that the entire length of the read oper-
ation would �t into the referent.

6.3 Results

Figure 9 shows the execution overheads for the analyzed
programs. The Unopt columns show total dynamic instruc-
tion counts for executions with no optimization, and the Opt
columns show instruction counts with run-time resolved op-
timization.
For the run-time optimized executions, the normalized in-

struction counts range from 2.3 (YACR-2) to 6.4 (BC). This
overhead re
ects program performance without any compile-
time optimization. While this performance degradation will
likely be acceptable for the development cycle of short or
medium length program executions, it may still be pro-
hibitively expensive for very long running programs, and it
is certainly too costly a price to pay for in-�eld instrumen-
tation of a program. Examining more closely the breakdown
of the execution overheads yields much insight into how the
performance of our checking methodology could be improved.
For each program, we break down the overhead costs into

�ve categories. We measured this cost by compiling and run-
ning the program repeatedly with incrementally more func-
tionality in the safe pointer implementation. Original Pro-
gram is the instruction count for the unchecked program,
always normalized to one.
User De�ned Ptr is the cost in our framework for imple-

menting all pointers as structures at the user level. The pri-
mary factors a�ecting performance here are increased loads,
stores, and function calls. The �rst factor is due to the MIPS
cc compiler's handling of structure variables; once wrapped
in a structure, the �eld variables are no longer eligible for reg-

www.manaraa.com

Original Program User Defined Ptr Spatial Data

Spatial Checks Temporal Data Temporal Checks

Unopt Opt Unopt Opt Unopt Opt Unopt Opt UnoptOpt Unopt Opt
0

2

4

6

8

10

12

N
or

m
al

iz
ed

 In
st

ru
ct

io
n

C
ou

nt

BackpropAnagram BC PartitionMin-Span YACR-2

Figure 9: Execution overheads.

ister allocation. Wrapping attributes around pointers also in-
creases the costs of procedure call parameter passing. MIPS
cc compiler passes most scalar arguments through registers;
however, composite structures are always passed through
memory (on the stack). The second major factor a�ecting
performance is an increased number of function calls. The
AT&T C++ compiler simpli�es complex expressions created
during template instantiation by extracting portions of the
expression into static functions. This cost is only a side-e�ect
of our implementation.
Spatial Data is the cost of maintaining and copying spatial

object attributes. For the optimized executions, this over-
head includes the cost of maintaining the pointer dirty bits
and previous index values. Spatial Checks is the cost of per-
forming spatial checks. Temporal Data is the cost of main-
taining and copying temporal object attributes. For the op-
timized executions, this overhead includes the cost of main-
taining the additional counter variable. Temporal Checks is
the cost of performing temporal checks.
For BC, Min-Span, and Partition, run-time resolved opti-

mization paid o� with a slightly lower execution cost for spa-
tial checking. For Anagram, Backprop, and YACR-2, adding
run-time checks resulted in a higher cost for spatial access
checking; and in the case of Backprop, a higher overall exe-
cution overhead.
These programs demonstrate the trade-o�s involved in

providing run-time resolved optimization. Run-time opti-
mization adds the extra overhead of copying, maintaining,
and checking the extra safe pointer state. If this added over-
head, plus the overhead of the required checks, is greater than
doing all the checks, there is no advantage to run-time check
optimization. With faster checks, compile-time optimization,
and spatially complex programs, this trade-o� becomes even
more acute. Since Anagram, Backprop, and YACR-2 must
execute many of their checks (39%, 67%, and 86% respec-
tively), they do not bene�t from the run-time optimizations.
For YACR-2, the e�ects are much less pronounced because
dereferences are much less frequent (as shown in Table 1).
The second e�ect to observe when comparing the opti-

mized to unoptimized execution costs is that the greatest
bene�t of run-time check optimization always comes from
eliding temporal checks. In fact, adding run-time optimiza-
tion for temporal checks caused a signi�cant decrease in all
execution overheads except Backprop. There are two facets
to this result. First, temporal checks are very expensive
(requiring an associative search), so eliding one has a great

Original Program User Defined Ptr Spatial Data

Spatial Checks Temporal Data Temporal Checks

Unopt Opt Unopt Opt Unopt Opt Unopt Opt UnoptOpt Unopt Opt
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

N
or

m
al

iz
ed

 T
ex

t S
iz

e

BackpropAnagram BC PartitionMin-Span YACR-2

Figure 10: Text overheads.

performance advantage. Second, our run-time resolved op-
timization of temporal checks is very e�ective. Temporal
checks are rarely required, even for BC and Min-Span, both
of which free storage often. In the case of Backprop, adding
run-time optimization for temporal checks resulted in an in-
creased execution overhead. Backprop has only one dynamic
object, an array, so temporal checking is relatively cheap
without any optimization (the capability is always at the
head of the hash bucket chain). In this case, the cost of
maintaining the extra storage required for the free counter
outweighs the cost of executing all temporal checks.
Adding checking code reduces the e�ectiveness of many

traditional compiler optimizations. We inline all check code
except for calls to ValidCapability() and abort(). These
functions are both externally de�ned, so the compiler must
make conservative assumptions as to what actions they take.
This conservative approximation has the e�ect of limiting the
e�ectiveness of many optimizations such as invariant code
motion, register allocation, copy propagation, and common
subexpression elimination. Neither of these functions pro-
duce any side-e�ects for normal executions. Hence, better
compiler integration, i.e., providing a special channel of com-
munication between the safe program generator and the com-
piler optimizer, would certainly increase the performance of
our safe executions.4

Text size overheads are shown in Figure 10. All check-
ing code, except the capability routines and what the C++
compiler extracts for expression simpli�cation, is inlined into
the original program text. Surprisingly, the text overheads
are quite small; 35% to 300% for the unoptimized executa-
bles and 41% to 340% for the run-time optimized programs.
The text sizes for the run-time optimized programs are larger
due to additional code required for maintaining, copying, and
checking the extra object attributes. As shown by comparing
Table 1 and Figure 10, there is a strong correlation between
static dereference density and the resulting text overhead.
The data size overheads, shown in Figure 11, are mea-

sured as the total size of initialized (.data) and uninitialized
(.bss) data segments plus the size of the heap segment when
the program terminates execution. The data size overheads
on the stack were not measured. All programs, except Min-

4Many compilers, e.g. GNU gcc, already understand the spe-
cial semantics of abort() and use this inter-procedural information
to improve optimizations. We should be able to achieve the same
results for ValidCapability().

www.manaraa.com

Original Program User Defined Ptr Spatial Data Temporal Data

Unopt Opt Unopt Opt Unopt Opt Unopt Opt UnoptOpt Unopt Opt
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
N

or
m

al
iz

ed
 D

at
a

S
iz

e

BackpropAnagram BC PartitionMin-Span YACR-2

Figure 11: Data overheads.

Span, have data size overhead below 100%. Backprop has the
lowest overhead (less than 5%) because most of its storage
is large global arrays which do not require any object at-
tributes. Min-Span has the highest overhead (330%), which
stems from the high density of pointers in its heap alloca-
tions, most of which contain eight pointers and three inte-
gers. Some of the run-time optimized programs have slightly
larger overheads due to the additional object attributes.
To summarize the main points of our results:

� Execution overheads, even without compile-time opti-
mization, are low enough to make our methodology use-
ful during program development. However, the over-
heads are not likely low enough that programmers would
release software with checking enabled. We are currently
exploring the use of compile-time optimization and bet-
ter compiler integration as means of increasing the per-
formance of our approach.

� The largest contributing factors to execution overhead
are 1) safe pointer structures are not register allocated,
and 2) many traditional optimizations fail with the addi-
tion of checks. Other performance losses are attributed
to the C++ compiler simplifying expressions through
the use of static functions, and, due to a bug in the
C++ compiler, the need to include the type size of the
referent in the object attributes. None of these di�cul-
ties are without recourse, however. Better integration
between the safe compiler and the optimizer could �x
most problems.

� Dynamically eliding spatial checks is generally ine�ec-
tive, primarily because maintaining the extra state, and
checking it, quickly outweighs the cost of executing all
checks. Our spatial check is very cheap to execute, and
pointer intensive programs tend to execute most of the
checks anyway.

� Temporal checks, on the other hand, are very expensive
to perform and are rarely required, so run-time opti-
mization shows to be bene�cial in most cases.

� The text and data size overhead are generally quite low.
The text overheads for all programs with run-time op-
timization, range from 41% to 340%, with all but two
below 100%. Data overheads range from 5% to 330%,
with all but one below 100%. Run-time optimized exe-
cutions have slightly larger text and data sizes.

7 Related Work

Our �rst attempt at creating a safe programming environ-
ment for C employed reference chaining. The technique is
similar to that used by many \smart pointer" implementa-
tions [EP91, Gin92]. The idea is to insert any pointer which
is generated either through use of explicit storage allocation,
e.g., malloc(), the reference operator (`&'), or assignment
into a reference chain rooted at the referent. When a pointer
value is destroyed, e.g., through assignment, storage deallo-
cation, or at procedure returns, the pointer is removed from
the reference chain. This technique has a number of useful
properties. First, it is possible to ensure temporal safety by
destroying all pointer values when a referent is freed { just
march down the reference chain assigning NULL to all point-
ers. Second, if a destructed pointer value is the last value in
the referent's reference chain, a storage leak has occurred
and it is detected immediately. Unfortunately, this tech-
nique cannot be made to work reliably in C. It is relatively
easy for the programmer to subvert the checking mechanism
through recasting and typeless calls to free(). Storage leak
detection also fails in the presence of circular references. The
safe programming technique described in this paper is signif-
icantly more reliable because its correctness does not rely on
tracking pointer values.
Some researchers have recently proposed providing com-

plete program safety through limiting the constructs allowed
in the language. The main thrust of this work is the de-
sign of languages that support garbage collection reliably
and portably. In [ED93], a safe subset of C++ is de�ned.
The safe subset does not permit any invalid pointers to be
created; this restriction, for example, precludes the use of
any explicit pointer arithmetic. The safe subset also requires
some checking, but much less than our checking technique re-
quires. Languages which can easily be made totally safe have
existed for a long time; for example, many FORTRAN imple-
mentations provide complete safety through range checking.
However, these languages tend to be less expressive than in-
trinsically unsafe languages such as C or C++. We felt that
it was important not to restrict the expressiveness available
to the programmer. Our checking technique is not limited
by the language upon which it is applied, it can be applied
successfully to compiled or interpreted languages with sub-
scripted and mutable pointers, local references, and explicit
and type-less dynamic storage management.
Table 2 details our work (Safe-C) and �ve other published

systems that support memory access checking.
Hastings' and Joyce's Purify [HJ92] is a commercially

available memory access checking tool. It is particularly con-
venient to use because it does not require program source
{ all transformations are applied to the object code. Pu-
rify supports both spatial and temporal access error check-
ing to heap storage only through the use of a memory state
map which is consulted at each load and store the program
executes. Purify also provides uninitialized read detection,
and storage leak detection through a conservative collector
[Boe93, BW88]. Spatial access errors are detected by brack-
eting both ends of any heap allocation with a \red zone".
These zones are marked in the memory state map as inac-
cessible. When a load or store touches a red zone a memory
access error is
agged. Temporal access errors are detected
by setting the memory state of freed storage to inaccessible.
Purify cannot detect all memory access errors. For exam-
ple, accessing past the end of an array into the region of the
next variable, or accessing freed storage that has been real-
located cannot be detected. These limitations occur because
Purify does not determine the intended referent of memory

www.manaraa.com

Name Environment Method Error Model

Spatial Checks? Temporal Checks? Extensions

Safe-C C/C++ source-to-source yes* yes* errant free's
translation

Purify object �les object code yes yes errant free's, uninitialized
[HJ92] translation limited to heap limited to heap reads, storage leaks

RTCC C safe yes* no
[Ste92] compiler

CodeCenter C/C++ interpreter yes* yes errant free's, uninitialized reads,
[KLP88] dynamic type checking, etc.

Bcc C source-to-source yes* no alignment checks,
[Ken83] translation over
ow checks

UW-Pascal Pascal safe yes* yes errant free's,
[FL80] compiler arithmetic faults, etc.

Table 2: Comparison of memory access checking work. Entries with an asterisk (*) indicate that the method detects all errors for
that particular error class.

accesses { it can only verify that the accessed storage is ac-
tive. Our checking technique, on the other hand, can detect
all memory access errors because it tracks not only the state
of storage, but also the intended referents of all pointer val-
ues. To increase the e�ectiveness of temporal error checking,
Purify \ages" the heap, holding freed storage in the heap
free list longer than needed. This aging increases the storage
requirements of programs that use the heap. The primary
disadvantage of our technique compared to Purify is that we
require source code before any checking can be implemented;
thus, source code is required if libraries are to be checked.
Our technique is also not portable across languages, that is,
a given implementation must be tailored for a speci�c lan-
guage. However, our technique is quite portable across di�er-
ent platforms, especially if implemented as a source-to-source
translator. Although Purify is portable across languages (on
a given platform), it is not portable across platforms.

Ste�en's RTCC [Ste92] extended the functionality of the
C language compiler PCC to include spatial error checking.
RTCC attaches object attributes to pointers in a fashion sim-
ilar to our technique; it does not, however, detect temporal
access errors, nor does it explore the use of check optimiza-
tion. Our checking technique �nds both spatial and temporal
access errors, and incorporates run-time and compile-time
optimizations through which access checks can be elided. In
the implementation of RTCC the issue of interfacing to li-
brary and system calls is addressed through encapsulation;
Ste�en also augmented sdb to provide users with transparent
debugging support.

CodeCenter [KLP88] is an interpreted C language environ-
ment. The error checking provided is very rich { it detects
many memory access errors as well as provides dynamic type
checking (i.e., the type of the last store to memory must
match the type of subsequent loads), uninitialized read de-
tection, errant free detection, and other useful checks. The
published information describing CodeCenter is somewhat
ambiguous as to how it implements memory access checking.
Object attributes (namely, type and size) are attached to all
storage when it is initialized. If a reference is made to stor-
age, it appears that the base and size attributes, associated
with the referent storage, are also attached to the pointer
value. Using this information, CodeCenter provides com-
plete coverage for spatial access errors. However, it does not
employ a capability based temporal checking scheme, so it is
(sometimes) possible to access freed storage after it has been

reallocated for another purpose. Temporal access checking
can also fail for pointer references to local variables. Because
our checking technique employs a capability based scheme,
it never misses temporal access errors. The primary dis-
advantage of CodeCenter is its resource requirements. Since
programs run in an interpreter, the execution overheads may
discourage its use, and in the case of long running programs,
may preclude its use. Due to our use of compile-time in-
strumentation, resource requirements are signi�cantly lower.
Compile-time instrumentation also allows us to employ static
check optimizations.
Kendall's Bcc [Ken83] is a commercial source-to-source

translator for the C language. It supports spatial error check-
ing, but temporal error checking is limited to NULL checks at
all pointer dereferences. The published information on Bcc
does not specify how the checking is implemented, however,
one �gure in the paper, showing the output of the translator,
suggests that base and bound object attributes are attached
to all pointer values.
Fischer and LeBlanc's UW-Pascal compiler [FL80] sup-

ports both temporal and spatial error checking. However, the
lack of mutable pointers and dynamically sized arrays makes
access checking much easier. While UW-Pascal detects all
spatial access errors, temporal access errors may not be de-
tected if storage is reallocated. Use of our checking technique
is not limited by the expressiveness of the language; that
is, it can be applied successfully to compiled or interpreted
languages with subscripted and mutable pointers, local ref-
erences, unions, and explicit and typeless dynamic storage
management.
A closely related area of work, which can bene�t from

our safe programming technique, is storage leak detection
[Boe93, BW88, ZH88]. A storage leak is any storage to which
the program can no longer generate a name. These leaks
occur when the last accessible pointer to a heap object is
overwritten. Without the ability to generate a name to the
heap object, it cannot be freed, hence it has \leaked" out of
the heap.
For languages like C and C++, leak detection is commonly

implemented with a conservative collector. A conservative
collector sweeps memory looking for unreferenced storage.
Because it is di�cult to know where all pointers are located,
the collector makes the conservative assumption that all pro-
gram accessible (non-heap) storage contains pointers. It then
uses a traditional mark and sweep collection method. While

www.manaraa.com

e�ective, this method has some drawbacks. First, storage
leak detection is not immediate, it is usually applied only
when the programmer demands it or when the program com-
pletes execution. Thus, for it to be useful, some dynamic
information, like a partial call chain, must be kept with allo-
cations, in order for the programmer to deduce the circum-
stances under which the storage leak occurred. Second, the
conservative pointer assumption can cause non-pointer val-
ues to be mistaken as pointer values which seem to reference
heap storage. These false hits can hide a storage leak. The
problem is aggravated by large storage allocations because it
is more likely that non-pointer values inadvertently reference
them; unfortunately, it is these large allocation leaks that we
would most like to �nd. Third, if the program hides pointers,
for example, by encoding type information in the upper bits
of a pointer, or does not keep all pointers within the bounds
of memory allocations, the collector may regard heap storage
as a leak when it is still in use.

These false leaks cannot occur under our checking scheme
because the base �eld always holds a pointer to the head
of the allocation, and the program cannot manipulate this
value. We can also address the problem of false hits, that
is, non-pointer values which appear to reference heap stor-
age, by applying safe pointer invariants to possible references.
One trivial test is to ensure that both the capability and the
free counter values of the possible reference are valid. If an
incrementing counter is used for each, each value should be
less than the current counter value. To summarize, using a
conservative collector to detect storage leaks with our safe
programming technique makes the process intrinsically more
reliable by eliminating false leaks and reducing the possibility
of false hits.

8 Conclusions

In this paper, we presented a pointer and array access check-
ing technique that provides complete error coverage through
a simple set of program transformations. Our technique,
based on an extended safe pointer representation, has a num-
ber of novel aspects. It is the �rst technique that detects all
spatial and temporal access errors. Its use is not limited
by the expressiveness of the language; that is, it can be ap-
plied successfully to compiled or interpreted languages with
subscripted and mutable pointers, local references, unions,
and explicit and type-less dynamic storage management. We
showed the transformations required in the context of the
C language, and also developed run-time and compile-time
check optimization frameworks. Finally, we described our
prototype implementation, and used it to analyze the execu-
tion, text and data size overheads of six non-trivial, pointer
intensive C programs. We showed that performance with
only run-time resolved optimizations was quite good. For all
six programs, instruction execution overheads ranged from
130% to 540%, with text and data size overheads typically
below 100%. The primary factors to performance degrada-
tion in safe programs are the lack of safe pointer register al-
location and ine�ective optimization in the presence of check
functions. We see the solution to these problems as better
integration between the safe compiler and the code genera-
tor.

Our prototype implementation, while successful at show-
ing the viability of our compile-time safe programming meth-
ods, leaves many questions of e�ciency and usability unan-
swered. We are addressing these issues with the development
of our fully automatic, optimizing Safe-C compiler.

Acknowledgements

We thank Jim Larus, Tom Ball, Alain K�agi, and Alvy Lebeck
for numerous discussions which helped shape this paper.
Also, thanks to Mary Baker, Hans-Juergen Boehm, John El-
lis, Mark Sullivan, Mark Weiser, Ben Zorn, and the anony-
mous referees for providing useful comments and directing
us to relevant references.

References

[ASU86] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

[Boe93] Hans-Juergen Boehm. Space e�cient conservative garbage
collection. Proceedings of the ACM SIGPLAN '93 Confer-
ence on Programming Language Design and Implementa-
tion, 28(6):197{204, June 1993.

[BW88] Hans-Juergen Boehm and Mark Weiser. Garbage collection
in an uncooperative environment. Software { Practice and
Experience, 18(9):807{820, September 1988.

[ED93] John R. Ellis and David L. Detlefs. Safe, e�cient garbage
collection for C++. Technical Report 102, DEC Systems
Research Center, June 1993.

[EP91] D. R. Edelson and I. Pohl. Smart pointers: They're smart
but they're not pointers. Proceedings of the 1991 Usenix
C++ Conference, April 1991.

[FH88] Anthony J. Field and Peter G. Harrison. Functional Pro-
gramming. Addison-Wesley Publishing Company, 1988.

[FL80] Charles N. Fischer and Richard J. LeBlanc. The implemen-
tation of run-time diagnostics in Pascal. IEEE Transactions
on Software Engineering, SE-6(4):313{319, 1980.

[Gin92] Andrew Ginter. Design alternatives for a cooperative
garbage collector for the C++ programming language. Tech-
nical Report 91/417/01, Department of Computer Science,
University of Calgary, 1992.

[Gup90] Rajiv Gupta. A fresh look at optimizing array bound check-
ing. Proceedings of the ACM SIGPLAN '90 Conference on
Programming Language Design and Implementation, pages
272{282, June 1990.

[HJ92] Reed Hastings and Bob Joyce. Purify: fast detection of
memory leaks and access errors. Proceedings of the Winter
Usenix Conference, 1992.

[Ken83] Samuel C. Kendall. Bcc: Runtime checking for C programs.
Proceedings of the Summer Usenix Conference, 1983.

[KLP88] Stephen Kaufer, Russel Lopez, and Sesha Pratap. Saber-
C: an interpreter-based programming environment for the C
language. Proceedings of the Summer Usenix Conference,
pages 161{171, 1988.

[Lar93] James R. Larus. E�cient program tracing. IEEE Computer,
26(5):52{61, May 1993.

[Lee91] Peter Lee, editor. Topics in Advanced Language Implemen-
tation. The MIT Press, Cambridge, MA, 1991.

[MFS90] Barton P. Miller, Lars Fredriksen, and Bryan So. An empiri-
cal study of the reliability of Unix utilities. Communications
of the ACM, 33(12):32{44, December 1990.

[Ros87] Graham Ross. Integral C { a practical environment
for C programming. In Proceedings of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (SIGPLAN
Notices), pages 42{48. Association for Computing Machin-
ery, January 1987.

[SC91] Mark Sullivan and Ram Chillarege. Software defects and
their impact on system availability { a study of �eld fail-
ures in operating systems. Digest of the 21st International
Symposium on Fault Tolerant Computing, pages 2{9, June
1991.

[Ste92] Joseph L. Ste�en. Adding run-time checking to the
Portable C Compiler. Software { Practice and Experience,
22(4):305{316, 1992.

[ZH88] Benjamin Zorn and Paul Hil�nger. A memory allocation pro-
�ler for C and Lisp programs. Proceedings of the Summer
Usenix Conference, pages 223{237, 1988.

